مذكرة

في الرياضيات

للمغم الثالث الاعدادي

(المراجعة النهائية في الهندسة)

الاستاذ	• الاسم:
طريقك	• الفصل:
للامتياز	• المدرسة:

مبسط	شرح
------	-----

امثلة متنوعة

تمارين متعددة

س اختر الاجامة الصحيحة مما مين القوسين

```
١ – أذا كان م، مه مركزى دائرتين نصفا قطريهما في ١ ، في ١ حيث أن : م ٥٠ > في ١ + في ١ فان الدائرتين
(متداخلتان ، متقاطعتان ، متماستان من الخارج ، متباعدتان )
 ۲ - أذا كان م، مه مركزى دائرتين نصفا قطريهما نني، ، نني، حيث أن : نني، - نني، < م > منى، + نني، +
فان الدائرتين ..... (متداخلتان ، متقاطعتان ، متماستان من الخارج ، متباعدتان )
 ٣ _ دائرتان م، به متماستان من الداخل فاذا كان طولا نصفى قطريهما ٥ سم، ٢ سم فان م به = ...... سم
                    ( صفر ، ۳ ، ۷
                         ع _ أذا كانت م دائرة طول نصف قطرها ٥ سم ، ﴿ نقطة على الدائرة فان م ﴿ = _
( السم ، ٥ سم ، ٢٠٥ سم ، ١٠ سم )
            ٥ – أذا كان المستقيم ل مماسا لدائرة طول نصف قطرها ٨ سم فانه يبعد عن مركزها ..... سم
            £ , • , A )

    ٦ - دائرة م طول نصف قطرها ٦ سم ، ٩ نقطة خارج الدائرة فان م ٩ يمكن أن تساوى ...... سم

       ( ۳ ، ۲ ، ۸ ،
 ( {
                     ٧ - إب قطر في الدائرة م ، أج ، ب د مماسان للدائرة فان أج .... ب د
 (یقطع ، یوازی ، عمودی علی ،ینطبق علی )
            \pi - دائرة محیطها \pi سم والمستقیم \pi یبعد عن مرکزها \pi سم فان المستقیم \pi سم والمستقیم \pi
 ( مماسا للدائرة ، قاطعا للدائرة ، خارج الدائرة ، قطرا في الدائرة )
  ٩ – أذا كانت ٩ نقطة في مستوى الدائرة ، طول نصف قطرها نق وكان ٥ < م ٩ < فق فان ٩ تقع .....
 ( خارج الدائرة ، داخل الدائرة ، على الدائرة ، على مركز الدائرة )
                   ١٠ ـ دائرتان م ، مه متماستان من الخارج فاذا كان طولا نصفى قطريهما ٣ سم ، ٥ سم
                   فان م رہ = ..... سم ۸ ، ۵ ، ۸
        ١١ _ م، م دائرتان طولا نصفى قطريهما ٩ سم ، ٥ سم ، م م = ٤ سم فان الدائرتين .....
    (متماستان من الداخل ، متقاطعتان ، متماستان من الخارج ، متباعدتان
```

ات.

7

```
١٢ - م ، م دائرتان طولا نصفى قطريهما ٧ سم ، ٥ سم ، م م = ١٢ سم فان الدائرتين ......
(متماستان من الداخل ، متقاطعتان ، متماستان من الخارج ، متباعدتان )
   ۱۳ - م ، مه دائرتان طولا نصفی قطریهما ٤ سم ، ٣ سم ، م م ه = ٩ سم فان الدائرتین ........
      (متداخلتان ، متقاطعتان ، متماستان من الخارج ، متباعدتان )

 ١٤ يمكن تعيين دائرة بمعلومية .....

( ثلاث نقط على استقامة واحدة ، نقطتين ، ثلاث نقط ليست على استقامة واحدة ، نقطة واحدة )

    ١٥ - عدد الدوائر التي يمكن ان تمر باي ثلاث نقط ليست على استقامة واحدة يساوي .........

( ، ، ۱ ، ۲ ، عدد لا نهائی )
                         ١٦ - مركز الدائرة المارة برؤؤس المثلث هو نقطة تقاطع .....
(متوسطاته، ارتفاعاته، منصفات زوایاه الداخلة، محاور تماثل أضلاعه)
           ١٧ - أذا كان المثلث ١٠ ج قائم الزاوية في ب فان مركز الدائرة المارة برعوسه هو ......
(منتصف اب ، منتصف اج ، منتصف ب ج ، خارج المثلث )
  ١٨ - لا يمكن رسم دائرة تمر برءوس ..... ( مستطيل ، مثلث ، مربع ، معين )

    ١٩ - أذا كانت : ٩ ب قطعة مستقيمة طولها ٦ سم فان طول نصف قطر أصغر دائرة تمر بالنقطتين ٩ ، ب

هو .....

    ٢٠ - جميع الدوائر التي تمر بالنقطتين ١٠ ، ب تقع مراكزها جميعا على .....

( ۹ ب ، محور تماثل ۹ ب ، نقطة منتصف ۹ ب )
                                              ٢١ ـ يمكن رسم ..... تمر بنقطة معلومة .
(دائرة واحدة ، دائرتين ، ثلاث دوائر ، عدد لانهائي من الدوائر )
                                           ٢٢ ـ عد الدوائر المارة بنقطتين معلومتين .....
(دائرة واحدة ، دائرتين ، ثلاث دوائر ، عدد لانهائي من الدوائر )
  (طنخی، ۹۰، ۱۸۰، ۳۶۰)
                                                      (۲۳) قياس نصف الدائره = .....
  (۲٤) طول نصف الدائره التي طول نصف قطرها نغي = ....... (ط نغي ، ۲ ط نغي ، ۱۸۰ ، ۹۰ )
```

اعداد ١/

(۲۰) طول القوس المقابل لزاویه مرکزیه قیاسها ۹۰ فی دائره محیطها ۸۰ سم یساوی

(۲۰ سم ، ۱۰ سم ، ۳۰ سم ، ۲۰ سم)

(۲٦) کلا مما یاتی اشکالا رباعیه دائریه ما عدا

(شبه المنحرف المتساوى الساقين ، المربع ، المستطيل ، متوازى الاضلاع)

(۲۷) قياس الزاويه المماسيه = الزاويه المركزيه المشتركه معها في القوس

(قياس، ضعف قياس، نصف قياس، ربع قياس)

(٢٨) النسبه بين قياس الزاويه المركزيه وقياس الزاويه المحيطيه المشتركه معها في القوس تساوى

(''' ' ':' ' ':' ' ':')

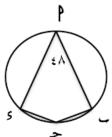
(۲۹) أذا كان قياس زاويه مماسيه = ۲۰ °فان قياس الزاويه المركزيه المشتركه معها في القوس =

(۳۰) من ای نقطه علی الدائره یمکن رسم

(مماس واحد فقط ، مماسين ، ٣ مماسات ، عدد لا نهائي من المماسات)

(٣١) عدد المماسات المشتركة التي يمكن رسمها لدائرتين متباعدتين (٢، ٣، ٤ ، عدد لا نهائي)

(٣٢) عدد المماسات المشتركه لدائرتين متماستين من الداخل (١، ٢، ١ ، ٣ ، عدد لا نهائي)

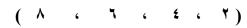

(٣٣) الزاويه المحيطيه التي تقابل قوسا اصغر في الدائره تكون

(حاده ، قائمه ، منفرجه ، مستقيمه)

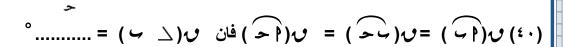
(۲۲) المربع الذي طول قطره ٨ سم فان مساحته = سم (١٦) ، ، ، ، ، ، ، ٣٢)

(۳۵) المربع الذي مساحة سطحه ۲۰ سم^۲ يكون محيطه سم (۲۰ ، ۲۰ ، ۲۰ ، ۰)

(٣٦) مستطيل طوله ٦ سم ، ومحيطه ١٦ سم تكون مساحته = سم ا


(٣١٢ ، ١٣٢ ، ٩٦ ، ٤٨)

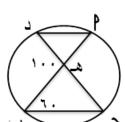
..... /^c

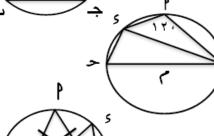

_ ≤

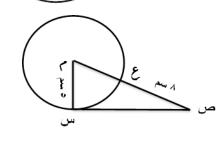
/1 -1-21

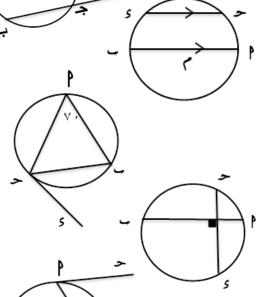
اعداد ١/

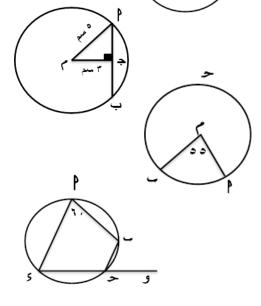
$$^{\circ}$$
 $= (\angle)$ فان $\omega(\angle \gamma) = (-2)$

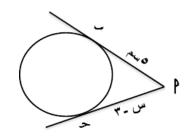

$$^{\circ}$$
..... = ($^{\circ}$ فان $^{\circ}$ ($^{\circ}$) =


$$^{\circ}$$
...... = (ا $^{\diamond}$ کان $^{\circ}$ فان $^{\circ}$ ا $^{\circ}$ نان $^{\circ}$ ا $^{\circ}$ نان $^{\circ}$ نان $^{\circ}$ نان کار (ا $^{\diamond}$ غان کار (ا


سم فان
$$\omega$$
 = ۵ سم ، ω ع = ۸ سم فان ω =سم

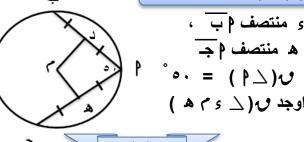

الحداد ١/

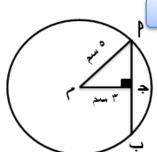

$$\cdots$$
 = (۶ \rightarrow نان \odot (\sim المركزة) = (\uparrow نان \odot (\sim المركزة)


$$^{\circ}..... = (\widehat{s} -) \upsilon + (\widehat{s} -) \upsilon (\circ 1)$$

ورم
$$(4 - 1) = \frac{1}{\pi}$$
 قياس الدائرة ، فان $(4 - 1) = \frac{1}{\pi}$ قياس الدائرة ، فان $(4 - 1) = \frac{1}{\pi}$

$$(10) \mathcal{O}(\angle 9) = 10^{\circ} \text{ is } \mathcal{O}(\angle 9) = \dots$$

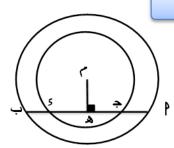



(١) في الشكل المقابل:

- ه منتصف ۹ ج
- اوجد ق (🗘 ٥ م ه)

الحل

- ° 9 · = (| 5 / \(\) ←
- · 1 = a + · · · a · · 4 ° 9 · = (| A / \) ←
 - = (A ↑ 5 \ \) · ·
 - °\\(\cdot \) = \((\cdot \cdot + \qquad \cdot + \qquad \cdot \) \(\cdot \cdot \cdot \cdot \cdot \)



(٢) في الشكل المقابل ۲ ج ⊥ ۱ ب

م ج = ٣ سم، ۱ م = ۵ سم اوجد طول ۹ ب

(٣)في الشكل المقابل

۹ج = ب۶

ف (٥) في الشكل المقابل

. △ ۲ وم متساوی الساقین

في الدائرة الصغري

بطرح (٢) من (١)

(٤)في الشكل المقابل:

ء منتصف ۹ هـ

ب ج مماس للدائرة م ،

٤٥ = (إ∠ إ

اوجد ق (ل ب ء م)

، برهن ان ۵ م ۶ م متساوی الساقین

الحل

و منتصف ۹ هـ .. م و ⊥ ۹ هـ .. ن ن (∠ م و ه) = ۹۰°

∵ بج مماس ∴ بج ⊥ ۹ب

・ ° ۹ · = (ユン)む← (٤ ° + 9 · + 9 ·) - ° ٣٦ · = (5 ← ユ ン)ひ

°170 =

° € ° = ° 1 7 ° - ° 1 Å · = (5 ↑ } \) U

° 60 = (60 + 90) - ° 1 A 0 = (1 \(\rangle \)

٠. ٩ جـ = ب و هو المطلوب

 $\gamma \wedge \overline{A} \perp \overline{+L} \quad \therefore A \leftarrow = A \land \quad (7)$

م دائرة . نق = مسم ، س ص = ۱۲ سم ، ع ص = ۸ سم

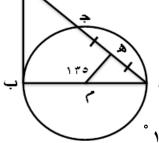
اثبت ان س ص مماس للدائرة عند س

الحل

دائرتان متحدتا المركز م

أثبت ان

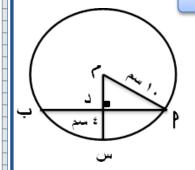
الحل


في الدائرة الكبرى

٠٠ ه ١ ١ ١٠٠٠ ١٠٠٠ (1)

(٦) في الشكل المقابل

ب مماس للدائرة م ،



°۱۳٥ = (هر ب∠) اوجد ق (🛴 ١)

الحل <

ه منتصف وح د م ه ل وح

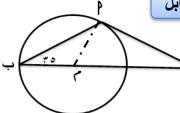
(٧) في الشكل المقابل

وس = ٤ سم ۲ م = ۱۰ سم اوجد طول ۹ ب

ثم اوجد مساحة المثلث ١ بس

الحل

 $\gamma = 1 - 1 = 7$ سم $\gamma = 1 - 1 = 7$


٠٠ و ١ ٩٠ ٠٠ ومنصف ٩٠

.. ﴿ ب = ۲ × ۸ = ۲۱ سم

مساحة المثلث $q - m = \frac{1}{4} + x$ وس

 $\frac{1}{2}$ سم $\frac{1}{2}$ = ۲۲ سم $\frac{1}{2}$

(٨) في الشكل المقابل

٩ ج قطعة مماسية للدائرة م

ۍ(∠ب) = ه۳ْ

(-+) (-+) (-+)

الحل <

العمل: نرسم أم نصف قطر

P ← L → P .: 1 ← L · · 。٩·= (~ トン △) 0 ← م = م ب

$$^{\circ}$$
" = ($\hookrightarrow \triangle$) ω = (\hookrightarrow $^{\circ}$ P \hookrightarrow $) ω .$

(٩) في الشكل المقابل:

٩ ب = ٩ جـ

س منتصف آب ،

ص منتصف ج ج °٧٠ = (ب ﴾ ج \

(١) اوجد ق(∠د م هـ)

(٢) اثبت ان س د = ص هـ

البرهان س منتصف ۱ ب

° 9 · = (P ∪ r ∠) v ← + P ⊥ ∪ r :

بالمثل ص منتصف آج

· ひ(/ と へ)

اولا

·· ﴿ بِ = ﴿ جِـ (الاوتار متساوية)

، م د = م هـ (انصاف اقطار) (٢)

∴ سد=صهـ

(١٠) في الشكل المقابل:

٩ب = ٩جـ

د منتصف ۱ ب

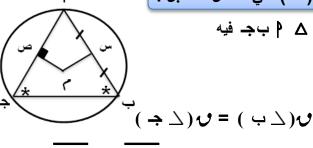
ه منتصف ۹ ج **で・= (ふって △)**ひ

برهن ان

- (۱) △ دم هـ متساوى الساقين
- (Y) △ (ca. a a a n l e o l l e o l l e o

البرهان

· د منتصف آب .. م د ل ۱ ب


· ه منتصف آج · · م ه ل آج

.: 🛆 دم ه متساوی الساقین اولا

من (١) ، (٢) ∴ △ (دهـ متساوى الاضلاع <u>ٹانیا</u>

(١١) في الشكل المقابل:

△ ۱ بج فيه

س منتصف آب ، م ص ل آج

برهن ان م س = م ص

البرهان <

·· س منتصف (طبح (۱) من (۱۷) من (۱۷) · ب

∴ | ب = | ب
 ← (الاوتار متساویة)

.. م س = م ص ∴

(١٢) في الشكل المقابل:

البرهان

$$\therefore \qquad \forall \psi = + c \quad \frac{\partial y}{\partial x}$$

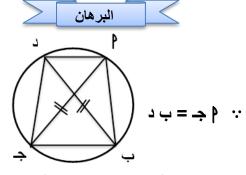
$$\frac{1}{\sqrt{2}} \forall \psi = \frac{1}{\sqrt{2}} + c \quad \therefore \quad \forall \psi = + \omega$$

$$\upsilon(\angle \P \ \mathsf{w} \ \mathsf{e}) = \upsilon(\angle \not\in \mathsf{w} \ \mathsf{e}) = \mathsf{v}$$

(١٣)في الشكل المقابل

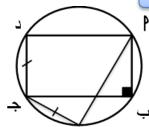
$$q \rightarrow = \forall ma$$
 ،
$$\mathcal{O}(\angle \gamma \rightarrow q) = \circ \circ \circ$$

$$ext{leque}$$


البرهان

۰۹۰ = (ب) الم

طول
$$(\stackrel{\stackrel{\bullet}{}}{q} \stackrel{\bullet}{}) = \frac{\stackrel{\bullet}{\text{elim}} \text{ lie } m}{\pi \cdot \pi} \times \pi \cdot \vec{v}$$


سم ۱۱ =
$$\vee \times \frac{\Upsilon\Upsilon}{\vee} \times \Upsilon \times \frac{\P}{\Psi \Upsilon}$$
 =

(١٤) في الشكل المقابل

$$(\widehat{+})_{\mathcal{O}} = (\widehat{+})_{\mathcal{O}} :$$

(١٥) في الشكل المقابل:

<u>ثانیا</u>

۹ ب جـ د مستطیل ، ج ه = ج د

اثبت ان ﴿ هـ = ب جـ

البرهان

$$\widehat{(++)} = \widehat{(++)}$$

$$(\widehat{+})_{\mathcal{O}} = (\widehat{+})_{\mathcal{O}} :$$

(١٦) في الشكل المقابل

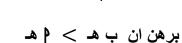
ج و مماس للدائرة م

17・= (ナイトン)ひ برهن ان 🛆 جـ ۱ ب متساوي الاضلاع

البرهان

$$(\widehat{+},\widehat{+})_{\mathcal{O}} = (\widehat{+})_{\mathcal{O}}$$

$$\frac{1}{7}$$
 $\mathfrak{O}(\angle 1 \ \gamma)$ المركزية


$$= \frac{r}{r} \times r r = r r$$

من (١) ، (٢) ∴ △ ج أ ب متساوي الاضلاع

البرهان <

$$^{\circ}$$
 = $\frac{1}{7}$ [۸۰ - $^{\circ}$ بالضرب × ۲

(١٨) في الشكل المقابل

البرهان

$$(\uparrow \angle) \omega = (\land \angle) \omega$$

$$(\triangle \land)$$
المركزية =۲ $(\triangle \lor)$ المحيطية

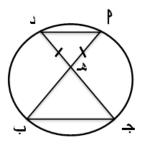
$$(\downarrow \bot) \lor < (\land \bot) \lor :$$

$$(\downarrow)$$
 \lor (\downarrow) \lor

(۱۷)في الشكل المقابل:

4 ب قطر فی الدائرة م

$$O(4 + 1) = ...$$


Note that $O(4 + 1) = ...$

(١٩) في الشكل المقابل:

۹د = ب هـ

برهن ان

جد = جھ

اعداد ١/

البرهان

- ∵ ۱۹ = به
- .: ن(م هـ) = ن(بد) ...
- : ひ(ム中) = ひ(ムす)
 - ∴ ﴿ج = بج

(٢٠) في الشكل المقابل:

وه ∥ بج

- م د = به بالطرح
 - ٠ جد = جه

(٢٢) في الشكل المقابل:

∴ هب = هج

٠٠ هـ ١ = هـ د

- ۱ ب = ۱ د ،
- ° ∧ · = () △) ·
- ه ° ∘ ۰ = (ج ∠) و
- اثبت ان النقط ٢، ب، ج، د تمر بها دائرة واحدة

البرهان

 $(2) \circ = (2) \circ :$

 $(\psi \triangle) \mathcal{O} = (\varphi \triangle) \mathcal{O} :$

∴ △ هـ بجـ متساوي الساقين

.: ال المراج (المراج) المراج : المرا :

البرهان

- ٠: ٩ ب = ٩ د .: المثلث ٩ ب د متساوي الساقين
 - $\circ \circ \cdot = \frac{7}{4 \cdot 14 \cdot 4} = (77) \circ \circ \cdot$
 - °°·=(∠∠) = (∠∠) ∴
 - وهما مرسومتان على قاعدة واحدة وفي جهة واحدة منها
- النقط ۹، ب، ج، د تمر بها دائرة واحدة
 أي ان الشكل ٩ ب جد د رباعي دائري

À ...

$(\triangle S) = \mathcal{O}(\triangle S) = \mathcal{O}(\triangle S)$ برهن ان $\mathcal{O}(\triangle S) = \mathcal{O}(\triangle S)$ البرهان

∵ وه ال بج

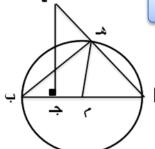
- (> A) \(\operatorname{\pi} = \(\operatorname{\pi} \) \(\operatorna
- (→ PA \ \) 0 = (PS \ \) 0 ∴
 - باضافة o(ackslash ackslash ackslash باضافة بالطرفين
- $(\neg \land \land \bot) \circ = (\neg \land \land \bot) \circ :$

(۲۱) في الشكل المقابل:

هـ ٩ = هـ د

برهن ان

هب = هج


البرهان

- ٠٠ ﴿ ٥٠ ﴿ ٥٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿</l>
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
 ٠٠ ﴿
- °٩٠= (هام ها = (هام ها عام)٠٠٠
- وهما مرسومتان على قاعدة واحدة (أ هـ) وفي جهة واحدة منها .. الشكل أ جد ه رباعي دائرى

(٢٤) في الشكل المقابل

γ ب قطر في الدائرة م

جد ل ا اب

برهن ان (۱) الشكل كه حب رباعي دانرى

$$(2)$$
 ω $Y = (2)$ ω (Y)

البرهان

محيطية مرسومة في نصف دائرة

وهما مرسومتان على قاعدة واحدة وفي جهة واحدة منها

$$(4) 0 = (5) 0$$

$$(\triangle \land \land \land)$$
 المركزية = ۲ $(\triangle \lor)$ المحيطية

$$\therefore \mathcal{O}(\angle \{ \gamma \land \bot \}) = \gamma \mathcal{O}(\angle c)$$

(٢٥) في الشكل المقابل

° ۱۰۰ = (کاب کے) و

° ٤٠ = (٤١٩ ج ع)

برهن ان: ن(ع د) = ن (جد د)

البرهان

٠٠ الشكل ٩ ب جد رباعي دائرى

∴ ؈(∠٩بۿ) = ؈(∠٤) = ٠٠٠°

في ۵ ۱ د ج : ن (∠ د ج ۱)

° : · = (: · + · · ·) - ° · · · =

- - ∴ ن (ا د) = ن (﴿ د) .

زوايا محيطية متساوية باقواس متساوية

(٢٦) في الشكل المقابل

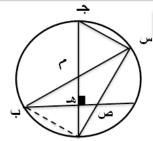
۹ ب جد شکل رباعي دائری،

____ جـ ب قطر في الدائرة ،

÷ ° ≀ · = (レ △) ひ

٥(٩٤) = ٥٠(٠)

البرهان ____


- ن جب قطر في الدائرة
- - ن الشكل م ب جد رباعي دائري
 - ° ۱۸・= (ユン) + (ユン) ひ ::
 - - - ∴ ۱۹ جـ د
 - $\circ \pi \cdot = \frac{7}{11 \cdot 11 \cdot 11} = (2 + 11) \circ \therefore$
 - - .: ج ۱ ينصف 🛆 د جـ ب

خارجة عن الشكل الرباعي الدائري

/<u>l =1=41</u>

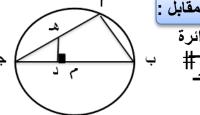
(٢٧) في الشكل المقابل

- ن الشكل م ب جد رباعي دائري
- ° ^ = (~ ~ ~ ~)ひ = (~ 5 ~)ひ :
 - $(\neg \uparrow) \circ \frac{1}{7} = (\neg s \uparrow \bot) \circ \cdot$
 - $00 = 11 \cdot \times \frac{1}{7} =$
 - で、= ○○ ∧○ = (~ 5 _) ひ:.

- . برهن ان (۱) الشكل س ص هـ جـ رباعي دائرى
 - $(Y) \mathcal{O}(\angle c \oplus \psi) = \mathcal{O}(\angle c \psi)$

البرهان

· جدد قطرفي الدائرة


العمل نرسم ب د

- .. $\mathcal{U}(\underline{\wedge} + w \cdot c) = 9 \circ$ محیطیة مرسومة في نصف دانرة
- $1 \wedge \cdot = (\triangle + \omega) + \mathcal{O}(\triangle + \omega) = 1 \wedge \cdot$
- وهما زاویتان متقابلتان $^{\circ}$... الشکل س ص ه جرباعي دائری ... (اولا)
 - ت 📐 (د ص ب) خارجة عن الشكل الرباعي الدائري
 - ∴ الاردوسب) = الاردج) ...
 - $(\underline{\leftarrow} \underline{\leftarrow}) = \mathcal{O}(\underline{\leftarrow} \underline{\leftarrow})$ ولكن $\mathcal{O}(\underline{\leftarrow} \underline{\leftarrow} \underline{\leftarrow})$

محيطيتان مرسومتان علي نفس القوس (٢)

من (۱)
$$(Y)$$

 $\therefore \mathcal{O}(\angle c \cup Y) = \mathcal{O}(\angle c \cup Y)$

(٢٩) في الشكل المقابل:

- (۱) الشكل أ ب ك ه رياعي دائرى خارجة عن الشكل الرياعي الدائرى
 - $(\overset{\wedge}{\rightarrow}\overset{\wedge}{)}\overset{\vee}{\cup}\overset{\vee}{\uparrow}=(\overset{\circ}{\rightarrow}\overset{\wedge}{\rightarrow}\overset{\wedge}{\rightarrow})^{\vee}(\overset{\wedge}{\rightarrow})$

البرهان

- ن بح قطر في الدائرة
- .. (🔼) = ۹۰ محیطیة مرسومة في نصف دانرة
 - $^{\circ} \land \land = (\lor \circ \land \bot) \lor + (\land \bot) \lor :$
 - .. الشكل أ ب ع ه رباعي دائري (اولا)
 - ت ﴿ ﴿ حَهُ ﴾ خارجة عن الشكل الرباعي الدائري
 - (1) (リン)ひ= (5キャン)ひ:
 - ولكن $\mathcal{O}(\underline{\wedge}, \underline{\wedge})$ المحيطية $=\frac{1}{7}\mathcal{O}(4, \underline{\wedge})$ (۲)
 - من (۱)، (۲)
 - $\widehat{(+)} \circ \widehat{\forall} = (5 \times -1) \circ \widehat{\cdot}$

محيطية مرسومة في نصف دائرة

(٣٠) في الشكل المقابل ج

و الدائرة م $\frac{\overline{q}}{\overline{q}}$ قطر في الدائرة م \overline{q} قطر في الدائرة م \overline{q} قطر في الدائرة م \overline{q} \overline{q}

ت/

/1 -1-2

- (۱) الشكل أمهد رباعي دائرى
 - (۲) اوجد **ب**(∠جـ)

البرهان

- : ه منتصف - و اقتصف العام ال
 - * (_ へ ~ へ \) · · ·
- * \^ = (> & < \) () + () () () .
 - : الشكل م م م ح رباعي دائري
 - في ۵ ۲ ب ح
 - ۰۰ = (٤٠+٩٠) ° ۱۸۰ = (↔ △) و

(٣١) في الشكل المقابل

ج و ينصف

4 // بح

برهن ان الشكل أب حرى رباعي دائرى

البرهان

- ٠ (٥ // بح
- °1.7= V≤ °1.8. = (P \(\times \) ...
 - . ← و ینصف (∠ ح)
- °1.7=°0"×7=(≥~5 \) ∴
 - $(\land \bot) \circ = (\land \smile \lor \bot) \circ :$

وهى خارجة عن الشكل الرباعى

الشكل السحو رباعى دائرى

(٣٢) في الشكل المقابل:

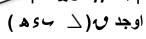
س ، س *ب*

مماسان للدائرة م

°٧٠ = (ك <u>\</u>)٠٠

اوجد ق (🔼 ٥ حب) = ١٢٥ برهان ان

- ۱) ۱ ب ينصف (🔼 ۱۶ س)
 - --- // SP (Y


البرهان

- ن سلم ، سب قطعتان مماساتان
- .. سوم = سب .. △ سوم ب متساوي الساقين
 - =(いトン)ひ = (いトレン)ひ :: $\circ \circ \circ = \frac{\checkmark}{11.} = \frac{\checkmark}{\checkmark \cdot - 1 \land \cdot}$
 - ٠٠٠ ب ح و شكل رباعي دائري
 - ° 00 = 170 110 + (5) → \(\times \) .
 - $(s \vdash \neg \bot) \circ = (\neg \vdash \neg \bot) \circ :$
 - ن م ب ينصف (١٥٥ س) الطلوب اولا
- · • (∠ ا بس) = (∠ ب ا ع) وهما في وضع تبادل
 - I SP ::

(٣٣) في الشكل المقابل:

° ∘ · = (↑ △) •

٩٠ // حد ١٥٠٥

البرهان

- ن الب ، احد قطعتان مماساتان
- ∴ ۱ ب = ۱ ح
 ∴ ۱ ب ح متساوي الساقين
 - - ٠٠ ١١ حد
- .: ن (عرد ه) = التبادل د التبادل
 - °110=70-°110- ×35€ ...

(٣٤)في الشكل المقابل:

٩٠ ، ١ح

مماسان للدائرة م

- ١) برهن ان حب ينصف (∠ ١ ح ع)
 - ۲) اوجد ق(<u>﴿ ٩)</u>

البرهان

 $\psi(\triangle - 2)$ (Large = $\frac{1}{2} \psi(\triangle - 2)$

$$=\frac{1}{7}\times 71 = 97^{\circ}$$

: 5= 11 - :

في ۵ ۱ ب ح:

(٣٦) الشكل المقابل:

∴ ۵ عصد متساوی الساقین

ب و مماس للدائرة م 🖊

، س ص ا ب

برهن ان الشكل ٢ س ص حرباعي دائرى البرهان

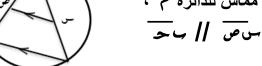
·· س*ص* اا ب

 $oldsymbol{\psi}(\, igs \, eta \, igs \, igs$

° v , =

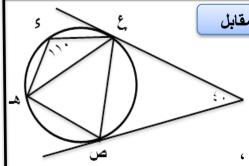
. و (∠ عصد) = ۱۱۰ – ۱۱۰ = ۱۰°

ن عصده شكل رباعى دائرى


 $(\triangle \mathcal{L}, \triangle \mathcal{L}) = \mathcal{O}(\triangle, \triangle \mathcal{L}) = \mathcal{O}(\triangle, \triangle, \triangle)$

 $() : () : () : () \rightarrow () = ()$ من () $() : () : () \rightarrow ()$ وهى خارجة عن الشكل الرباعي

٠٠ الشكل ١ س ص ح رباعي دائري


(٣٧) في الشكل المقابل

م عماس للدائرة م ،

 $oldsymbol{\omega}$ المماسية = $oldsymbol{\omega}$ ($oldsymbol{\omega}$ –) المحيطية (١) ∵ س∞ اا بح

(٣٥) في الشكل المقابل <u>س ع ، س ص</u> مماسان للدائرة ر ن الاسک) و ، ٤٠ = (ك سک) و ،

> $11 \cdot = (s \perp) \circ$ برهن ان ۵ عص ه متساوی الساقین

البرهان

ن سع ، سس قطعتان مماساتان ن

∴ س ع = س ص ∴ ۵ س ص ع متساوي الساقين

 $^{\circ}\vee\cdot=\frac{\text{$\xi\cdot-1\wedge\cdot$}}{\checkmark}=(\varpi\xi,\varpi\underline{\,\,})\varpi\ .$

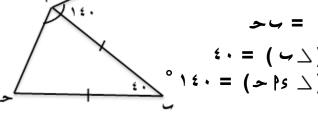
(٣٨) في الشكل المقابل:

۹ س ح ی متوازی اضلاع

حى مماس للدائرة المارة برؤس المثلث أسح

البرهان

- ٠ (ح = بح
- $(Y) \qquad (> \lor) \lor = (> \lor \lor \bot) \lor :$
- ·· حرى مماس للدائرة المارة برؤس المثلث ألب ح


- (۱) بالتبادل (۲ م م م ع) = الم التبادل (۱) ... التبادل (۱)

(٣٩) في الشكل المقابل

>4 = 14

£ · = (-> \) €

° \ £ · = (> } ≤ \)

برهن ان ٥ مماس للدائرة المارة برؤس المثلث ١ - ح

البرهان

- > = | · ·
- $\circ \vee \cdot = \frac{\sharp \cdot - \vee \wedge \cdot}{2}$
- $\forall \cdot = \forall \cdot 1$ $\xi \cdot = (\smile)$ $\xi \triangle)$ $\psi :$
 - $\forall \cdot = (> \bot) \emptyset = (\lor) \Diamond :$
 - ن. { < مماس للدائرة المارة برؤس المثلث } -

ا ب = (ه ، ص (رب ع هـ) = ٠٤ م الله عند) = ٠٤ اوجد ق(∠ إ هـ ب) ، ق (∠ ء) برهن ان (۱) الشكل م هدى رباعي دائري

- (٢) ع مماس للدائرة المارة برؤس المثلث م ب ه البرهان
 - ٠٠ ١٠ = ١٨
- $\forall \cdot = \frac{\cdot \cdot 1 \wedge \cdot}{\checkmark} = (\smile \angle) \circ = (\smile \triangle) \wedge \bot \circ \cdots$
 - : ١ ح ع متوازي اضلاع
 - ° ∨ · = (\(\(\sigma \) \(\operatorname{\ceil} \) \(\operatorname{\cei
- ن $\mathcal{O}(4 1) = \mathcal{O}(4 1)$ وهي خارجة عن الشكل ...
 - ٠٠ الشكل ١ هدى رباعي دائري اولا
 - س (کا ه) = س (کا ه ک) = ۱۰ ° بالتبادل التبادل
 - ° ∨ · = (\) \ ∪ = (\ \ \ \ \) \ ∴
 - ·· (ع مماس للدائرة المارة برؤس المثلث (س ه

(٤١) في الشكل المقابل:

 $\circ \circ = (5 \triangle) \bigcirc$

170=(& < キ ン)ひ

، برهن ان حو مماس للدائرة م

البرهان

- · اب وتر مشترك · م م ل اب
 - · ひ(とりはつ) = · P°
- . (∠ ~) = · ۲۰° (· P + ۰۲0 + ۰۰)
- ∴ وح لے مح ∴ وح مماس للدائرة م

(٠٤) في الشكل المقابل

4 ب ح و

متوازي اضلاع

اعداد ا/

(٤٢) في الشكل المقابل

 \overline{A} ب قطر في الدائرة م

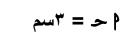
برهن ان

·· ﴿ بُ قطر في الدائرة

$$\psi(\angle e \wedge e \wedge e) = \psi(\angle f) \quad (1)$$

$$\mathcal{O}(\angle e - \mathbf{a})$$
 المماسية $= \mathcal{O}(\angle \dagger)$ المحيطية (۲) من (۱) ، (۲)

$$\therefore \mathcal{O}(\angle e \triangle \sim) = \mathcal{O}(e \sim \triangle)$$


(٤٣) في الشكل المقابل

البرهان

 $\upsilon(\triangle \triangle \neg \triangle)$ المحيطية = $\frac{1}{7}$ $\upsilon(\triangle \neg \triangle)$ $= 1 \cdot \neg \neg$

$$^{\circ}$$
TT, $^{\circ}$ = $\frac{110-14.}{7}$ = $(1) \cup ...$

(٤٤) في الشكل المقابل

برهن ان ٢٥ مماس للدائرة المارة برؤس المثلث ٢٠ حد

البرهان

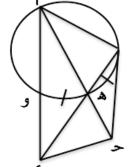
$$\Rightarrow \frac{1}{7} = \Rightarrow \beta \circ 9 \circ = (\Rightarrow \beta \hookrightarrow \triangle) \circ \circ$$

$$^{\circ}$$
 $^{\circ}$ $^{\circ}$

$$(>) \circ = (> \upharpoonright s \bot) \circ :$$

(٥٤) في الشكل المقابل

البرهان


· اب مماس .. م. ل ۱۹ اب

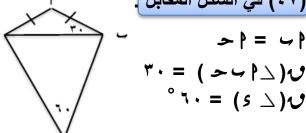
$$\upsilon(\triangle S)$$
 ($\Delta \Box$

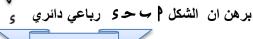
$$^{\circ}$$
 $\forall \cdot =$ $\stackrel{\cdot}{\leftarrow} \times \frac{1}{7} =$

(٤٦) في الشكل المقابل:

البرهان <

$$(- > > >) \circ = (- > > >) \circ :$$

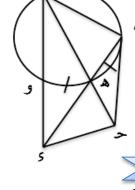

$$(\triangle \cup) = (\triangle \cup) = (\triangle)$$
ولكن $(\triangle \cup) = (\triangle \cup)$


$$(\sim 45 \leq) \circ = (\sim 15 \leq) \circ :$$

وهما مرسومتان على قاعدة واحدة وفي جهة واحدة منها

: الشكل إ ب ح و رباعي دائري

(٤٧) في الشكل المقابل :



البرهان

$$17 \cdot = (7 \cdot + 7 \cdot) - 14 \cdot = (7 \cdot) = .71$$

$$1 \land \cdot = 1 \cdot + 1 \land \cdot = (s \triangle) \circlearrowleft + (P\triangle) \circlearrowleft :$$

.. الشكل أب حرى رباعي دائري

(٤٨) في الشكل المقابل

م س ينصف <u>_</u> بم ح

<u>ص</u> ينصف <u>_</u> بع ح

برهن ان

الشكل إسسى رباعي دائري البرهان

(~54√)0=(~P4√)0 : محيطيتان علي نفس القوس بالضرب × 🕆

 $(\sim \varsigma \hookrightarrow \searrow) \circ \circ \frac{1}{\mathsf{v}} = (\sim \mathsf{P} \hookrightarrow \searrow) \circ \circ \frac{1}{\mathsf{v}} :$

 $\therefore \mathfrak{G}(\triangle \mathbb{Z}^{n}) = \mathfrak{G}(\triangle \mathbb{Z}^{n}) = \mathfrak{G}(\triangle \mathbb{Z}^{n})$ وهما مرسومتان على قاعدة واحدة وفي جهة واحدة منها

.. الشكل إسص و رباعي دائري

(٤٩) في الشكل المقابل

س منتصف ﴿ ح <u> - -</u> مماس للدائرة م برهن ان الشكل أس س ص رباعي دائري البرهان

ن س منتصف م ح ن مس لم محد ن

ه (کاسس ع) = ۹۰°

·· بص مماس للدائرة م ·· بص لـ ١ ب ٥٩٠ = (١٥٠ مام ٥٩٠ ع

 $\therefore \mathcal{O}(\triangle | \neg \neg \neg \neg) = \mathcal{O}(\triangle | \neg \neg \neg)$

وهما مرسومتان على قاعدة واحدة (أ ص) وفي جهة واحدة منها

ن الشكل إسس رباعي دائري ..

مذكرة

في الرياضيات

العنوان

للحجز والاستعلام

ت

