

ALGEBRA

Mr. Abdelrahman Essam

TEL. 01022543617

EQUATIONS

Solving two equations in two variables – Solving two equations of second degree in one unknown – General formula – Set of zeroes of the polynomial functions.

SOLVING TWO EQUATION OF THE FIRST DEGREE IN TWO VARIABLES

1		The solution set of tl	he tw	o equation: $x + y = 0$, y-	$-5 = 0$ in: $\mathbb{R} \times \mathbb{R}$ is		(Alex 11 , Aswan 18)
	a	{5,-5}	Ь	{(5,-5)}	©	{(-5,5)}	d	(-5,5)
2		The solution set of tl	he tw	o equation : x - 2 y =	1,3	$x + y = 10$ in : $\mathbb{R} \times \mathbb{R}$	is	(Souhag 18 , Fayoum 11)
	a	{(5,2)}	Ъ	{(2,4)}	©	{(1,3)}	d	{(3,1)}
3	The	two straighy lines : x	x + 2 y	y = 1 , $2x + 4y = 6$	are	(South Sini 21 , Ismaillia	21)	
	a	Parallel	Ъ	Perpendicular	©	Coincident	d	intersecting
4	圖!	The two straight line	es:32	x + 5y = 0, $5x - 3y = 0$	= 0 ar	e intersected in the		Alex 14 , Beheira 11 , Assiut 21)
	a	Origin point	Ь	first quadrant	©	second quadrant	d	fourth quadrant
5	The	Solution set of the tv	wo eq	uations: $x = 3$, $y =$	4 is	(Qalyubia 21 , Minya 2	1)	
	a	{(3,4)}	Ь	{(4,3)}	©	\mathbb{R}	d	ф
6	The	S.S in $\mathbb{R} \times \mathbb{R}$ of the tw	wo eq	uations: $y - 3 = 0$,	y + x :	= 0 is (Ismailia 12)	
	a	{3,3}	Ъ	{(-3,3)}	©	{(a,o)}	d	{(o,3)}
7	The	two straight lines re	prese	nting the two equati	ons : a	2x - y = 4, $2x - 3 =$	y ar	e
	a	Parallel	(b)	Perpendicular	©	Coincident	(d)	intersecting
						5.5.777 57.55.577.5	_	•
8		The two straight line				ns: x - y = 2 , 2x - 3		4 are
8		The two straight line Parallel				as: x - y = 2 , 2x - 3		4 areintersecting
9	(a)	Parallel If there are infinite n	es rep	resenting the two equals $\mathbf{Perpendicular}$ er of solutions in \mathbb{R} and	uation©	ns : x - y = 2 , 2x - 3 Coincident the two equations : x	2 y = (d)	
9	(a)	Parallel	es rep	resenting the two equals $\mathbf{Perpendicular}$ er of solutions in \mathbb{R} and	uation©	ns : x - y = 2 , 2x - 3 Coincident the two equations : x	2 y = (d)	intersecting
9	a Ther	Parallel If there are infinite n n:k=(Souhag 19	es repoumb	resenting the two equal Perpendicular er of solutions in R > 2 18, Qena 17, Dakahlia 12	uation © R of Giza 21	ns:x-y=2, 2x-i Coincident the two equations:x	2 y = (d) (d)	intersecting $y = 7$, $3x + ky = 21$ 21
9	a Ther	Parallel If there are infinite noted in the second	es repoumb	resenting the two equations in \mathbb{R} and	uation © R of Giza 21	hs: $x - y = 2$, $2x - 3$ Coincident the two equations: $x = 3$	2 y = (d) (4 + 4 y	intersecting $y = 7$, $3x + ky = 21$ 21
9 11	@ Then @ If the @ If the	Parallel If there are infinite in its in: k =(Souhag 19 4 e two equations: x + 2 e point of intersections	b sehei	resenting the two equations in \mathbb{R} and	uation © R of Giza 21 © s only ©	ns: x - y = 2 , 2x - 7 Coincident the two equations: x	g y = (d) (4 + 4 y (d) (en k) (d)	intersecting $y = 7, 3x + ky = 21$ 21 $\neq (Giza 18)$ -4
	① Ther ① If the ① If the 八 The	Parallel If there are infinite in items in : k =	b sehei	resenting the two equations in \mathbb{R} and	uation © R of Giza 21 © s only ©	ns:x-y=2, 2x-i Coincident the two equations:x 12 one solution for, The	g y = (d) (4 + 4 y (d) (en k) (d)	intersecting $y = 7$, $3x + ky = 21$ 21 \neq
11	① Ther ① If the ① If the ① O	Parallel If there are infinite in items in the image of the intersection in the image of the im	b sehei	resenting the two equations in \mathbb{R} and	uation © R of Giza 21 © s only © x - 3 = ©	Coincident the two equations: x one solution for, x 4 and $x + 2k = 5$ lies	2 y = (d) (x + 4 y) (d) (en k) (d) (es on	intersecting $y = 7$, $3x + ky = 21$ 21 \neq
11	① Ther ① If the ① If the ① O	Parallel If there are infinite in items in : k =	b sehei	resenting the two equations in \mathbb{R} and	uation © R of Giza 21 © s only © x - 3 = ©	Coincident the two equations: x one solution for, x 4 and $x + 2k = 5$ lies	2 y = (d) (x + 4 y) (d) (en k) (d) (es on	intersecting $y = 7, 3x + ky = 21$ 21 $\neq(Giza 18)$ -4 the fourth quadrant
11	① Ther ① If the ① If the ① O	Parallel If there are infinite in items in the image of the intersection in the image of the im	b sehei	resenting the two equations in \mathbb{R} and	uation © R of Giza 21 © s only © x - 3 = ©	Coincident the two equations: x one solution for, x 4 and $x + 2k = 5$ lies	2 y = (d) (x + 4 y) (d) (en k) (d) (es on	intersecting $y = 7$, $3x + ky = 21$ 21 \neq
12	@ If the a a a a a a a a a a a a a a a a a a a	Parallel If there are infinite in it is is a contagn of solutions in the section in the section is a contagn. The section is a contagn of solution is a contagn. The section is a contagn of solution is a contagn. The section is a contagn. The section is a contagn of solution is a contagn. The section is a contagn of solution is a contagn. The section is a contagn of solution is a contagn of so	b sof the b	resenting the two equations in \mathbb{R} and	uation © R of Giza 21 © s only © x - 3 = © 5 in R ©	Coincident the two equations: x one solution for, The and $y + 2k = 5$ lie 1 $x \in \mathbb{R}$ is ———————————————————————————————————	2 y = (d) (+ 4 y (d) (en k (d) (es on (d)	intersecting $y = 7, 3x + ky = 21$ 21 $\neq(Giza 18)$ -4 the fourth quadrant

KTABYEG.GOM

14	The	number of solutions	of th	e equation : $x = 7$ in	$\mathbb{R} \times \mathbb{F}$	is (Cairo 21)		
	a	Infinite numbers	b	zero	©	1	d	2
15		The point of intersec	ction	of the two straight li	nes : 2	x = 2 and $x + y = 6$ is	s	(Alex 18)
	a	(2,6)	b	(2,4)	©	(4,2)	d	(6,2)
16		The point of intersec	ction	of the two straight li	nes : i	2x - y = 3 and $2x + y$	y = 5	lies on the
	a	First quadrant.	b	Second quadrant.	©	Third quadrant.	d	Fourth quadrant.
17	27.142.01	e point of intersection		the two straight lines	s:x-	1 = 0 and $y = 2 k$ lie	s on t	he fourth quadrant
	a	- 5	b	0	©	1	d	5
18	The	two straight lines : 3	x = 7	and 2 y = 9 are	(mat	rouh 16 , luxor 17)		
	a	Parallel			©	Coincide		
	©	Intersect and non-	perpe	endicular	d	perpendicular		
19		If the two straight lin	nes w	hich represent the tv	vo equ	ations: $x + 3y = 4$ a	nd x	$+ \alpha y = 7$ are parallel
	, the	n a = (Port Said 1	8)					
	a	6	b	1	©	-3	d	3
20	If th	e point (9,2) belon	g to t	he set of solutions o	f the e	quation: $x - ky = 3$, then	ı k =
	a	1	b	2	©	3	d	6
21	Two	numbers their sum	= 13 a	and their difference i	s 5 , th	en the two number a	re	
	a	7 and 6	b	8 and 5	©	9 and 4	d	10 and 3
22	Thre	e years ago , ahmed	's age	was x years, then h	nis age	after 5 years is		
	a	x + 3	Ь	x + 5	©	x + 8	d	x + 2
23	A tw	o-digit-number , on	es di	git is x and tens digi	it is y ,	then the number is		
	a	x + 10 y	в	y + 10 x	©	хy	d	x + y
	_	e sum of ages of a fa		and his son now is 47	years	, then the sum of the	eir ag	es
	a	27	b	37	©	57	d	67
25	If (5	(x-4) = (y+2,3)) , the	en:x+y=(Lux	or 18)			
	a	6	Ъ	8	©	10	d	12
26	If (5	(x+1) = (y,3),t	hen :	x + y = (Damietta	21)			
	a	3	b	5	©	7	d	9
27	The	orderd pair which sa	tisfie	s the equation : x - y	y = 1 i	S (Red Sea 21)		
	a	(1,1)	b	(2,1)	©	(1,2)	d	(0.5,1)

SOLVING AN EQUATION OF THE SECOND DEGREE IN ONE UNKNOWN

- The solution set of the equation: $x^2 + 1 = 0$ in \mathbb{R} is (Beni Suef 18)
 - (a) {1}
- (b) $\{-1,1\}$ (c) $\{-1\}$
- φ
- The solution set of the equation: $x^2 4 = 0$ in \mathbb{R} is (South Sini 21, matroub 21)
 - (a) {-2,2}
- (b) {-2}
- © {z}
- φ
- If the curve of the quadratic function f passes through the points (-1,0),(0,-4),(4,0) and And (0, – 6), Then the solution set of the equation : f(x) = 0 in \mathbb{R} is (gharbia 19)
 - (a) {-1,0}
- (b) {-4,0} (c) {-1,4} (d) {4,-4}

- If the curve of the quadratic function f does not intersect X-axis at any points.
 - , Then the number of solution of the equation : f(x) = 0 in \mathbb{R} is _____ (monofia 17)
 - A unique solution
- (b) zero
- two solution (C)
- An infinite solutions
- The curve of the function f such that $f(x) = x^2 3x + 2$ cuts X axis at the two points
 - (a)
- (2,0),(3,0) **b** (2,0),(1,0) **c** (-2,0),(-1,0) **d** (2,0),(-1,0)
- The solution set of the equations : $x^2 + 5x = 0$ in \mathbb{R} is
 - {0,5}
- (b) $\{\frac{-5}{2}, 0\}$

- The solution set of the equations: $x^2 4x + 4 = 0$ in \mathbb{R} is
 - (a) {-2,2}(b) {4,1}(c) {2}
- Φ
- The solution set of the equations: $x^2 + 5 = 0$ in \mathbb{R} is _____
 - (a) $\{\sqrt{5}, -\sqrt{5}\}$ (b) $\{-\sqrt{5}\}$ (c) $\{\sqrt{5}\}$
- Φ
- In the equations: $a x^2 + b x + c = 0$ if $b^2 4 a c > 0$, then the equation has _____ roots in \mathbb{R}

(Fayoum 19, damietta 16)

(a) 1

- zero
- An infinite solutions
- If the curve of the function $f: f(x) = ax^2 + bx + c$ has a minimum value at x = 2
 - , then the number of solutions of the equation : f(x) = 0 in \mathbb{R} is
 - **a** 0

1

2

- An infinite solutions
- If the point of the vertex of the curve of the function $f: f(x) = x^2 + bx + c$ is (2,8).
 - , then the solution set of the equation : f(x) = 0 in \mathbb{R} is _____
 - (a) {2,6}
- (b) {-2,6} (c) {2,-6} (d) {2,0}

- If the equation of the symmetry line of the curve of the function $f: f(x) = x^2 + bx 10$ is $x = \frac{4}{5}$.
 - , then the solution set of the equation : f(x) = 0 in \mathbb{R} is
 - (a) {10,-1}
 (b) {-2,5}
 (c) {2,-5}
 (d) {-1,10}

KTABIET, EUN

- If: x = 3 is one of the solutions of the function $f: f(x) = x^2 ax + 3$ in \mathbb{R} , Then: a = ------(8uez 17)
 - **a** 2

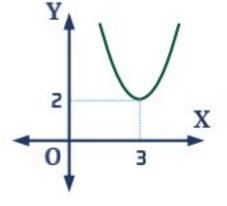
b 1

- 8
- If the solution set of the equation : $x^2 ax + 4 = 0$ in \mathbb{R} is $\{-2\}$, Then : $a = \dots$ (Gharbia 18)
 - (a) -2
- (b) -4

- 2
- If the curve of the function $f: f(x) = x^2 x + c$ passes through the points (2, 1)
 - , then : c = (gharbia 18)
 - **a** 2

1

- 2
- 1
- The solution set of the equation : $a \times^2 + b \times + c = 0$, $a \neq 0$ graphically is the set of X coordinates of the point of intersection of the curve of the function $f: f(x) = a x^2 + b x + c$ with the (Damiettaa 18)
 - Y axis
- X axis
- Symmetric line (C)
- Straight line y = 2


17 In the opposite figure :

The solution set of f: f(x) = 0 is (Souhag 18)

φ **a**

(b)

{2,3}

- 18 The equation of the symmetric axis of the curve of the function f where $f(x) = x^2 4$ is
 - is (K.El.Sheikh 21)
 - (a) x = -4
- $\mathbf{x} = \mathbf{0}$
- y = 0C
- y = -4

SOLVING TWO EQUATION OF THE FIRST DEGREE IN TWO VARIABLES

- The S.S of the two equations: x-y=0, xy=9 in $\mathbb{R}\times\mathbb{R}$ is (Qena 18, gharbia 11)
 - {(0,0)} **a**

- (b) {(-3,3)} (c) {(3,3)} (d) {(3,3),(-3,-3)}
- 2 If: x+y=3, $x^2-y^2=6$ in $\mathbb{R} \times \mathbb{R}$, then (x-y)=
 - 18 **a**

b 9

3

2 (d)

- 3 If: $x^2 + y^2 = 9$, $(x+y)^2 = 17$, then: xy = ...
 - **a** 16

8

(C)

- (d) 2
- one of the solutions of the two equations: x y = 2, $x^2 + y^2 = 20$ is (Kalyoubia 19, Qena 17)
 - (-4,2)(a)
- (b) (2,-4)
- (3,1)
- (d) (4,2)
- The degree of the equation: 3x + 4y + xy = 5 is (Port Said 18, Beheira 21)
 - **a** Zero
- First
- Second (C)
- Third
- one solution of the equation : $x^2 y^2 = 3$ in $\mathbb{R} \times \mathbb{R}$ is _____
 - (1,-2) (a)
- (b) (-2,1)

KTRESEG.GOM

- © (1,2)
- (-1,-2)

inal	Revisio	on							ALGEE
7		The ordered pair tha	t sati	sfies each of the two	equat	ions: $xy = 2$, $x - y$	= 1 i	S (Sharkia 12))
	a	(1,1)	b	(2,1)	©	(1,2)	d	(2,-1)	
8		The solution set of t	he tw	o equations : $x = y$,	x y =	1 in $\mathbb{R} \times \mathbb{R}$ is			
	a	{(1,1)}	b	{(-1,-1)}	©	{(1,-1)}	d	{(1,1),(-1,-	1)}
9	If: y	$y = 1 - x$, $(x + y)^2$	+ y =	5 , Then : y =(Fayoum	12)			
	a	5	b	3	©	4	d	- 4	
10	If: 2	$x^2 + xy = 15$, $x + y$	= 5 ,	Then : x =					
	a	3	b	4	©	5	d	6	
11	100			two numbers is 1 and	d the s	quare of their sum is	25		
		n the two numbers a							
	(a)	1,2	(р)	2,3	(C)	3,4	(d)	4,5	
12	Two	positive numbers , t	heir	sum is 9 and their pro	oduct	is 8 , then the two nu	mber	s are(Giza 1	(2)
	a	2,7	b	3,6	©	4,9	d	1,8	
13	If: 2	$x^2y + xy^2 = 25$, $x + $	- y =	5 , Then : x y =					
	a	3	b	4	©	5	d	6	
14	If: x	x + 2y = 5, $(x + 2y)$	-3)	$^{2} + 2x = 10$, Then:	x =				
	a	2	b	3	©	6	d	- 3	
			SI	ET OF ZEROES OF A P	OLYNC	MIAL FUNCTIONS			
1		The set of zeroes of t	he fu	$\mathbf{nction} \ \mathbf{f} : \mathbf{f}(\mathbf{x}) = -3$	x is	(Alex 12 Giza 17 Seuz	18 Da	mietta 21)	
		{ o }				{-3,0}	d	\mathbb{R}	
2	The	set of zeroes of the f	uncti	on f where $f(x) = 4$	is	(aswan 12 , aswan 17 , Ma	atrouh :	19 , Minya 21)	
		{-4}		{ o }	©	ф	d	{ z }	
3	The	set of zeroes of the f	uncti	on f where $f(x) = ze$	ero is	(Cairo 19 , ismaillia 2	1)		
	a	ф		\mathbb{R} – { o }	©	\mathbb{R}	d	zero	
4	The	set of zeroes of the f	uncti	on f where $f(x) = x$	² + 9 i	S (Dakahlia 19)			
	a	\mathbb{R}	b	{ 3 }	©	{3,-3}	d	φ	
5	The	set of zeroes of the f	uncti	on f where $f(x) = x$	² – 4 i	S (Qalyubia 21)			
	a	{ z }	b	{ z , _ z }	©	\mathbb{R}	d	φ	

The set of zeroes of the function f where f(x) = x ($x^2 - 2x + 1$) is (Alex 13, Ismaillia 17)

KTRRYEG.GOM

(a) {0,1}(b) {0,-1}(c) {-1,1}(d) {0,1,-1}

inal	Revisio	on							ALGEBRA
7	The	set of zeroes of f wh	ere f	(x) = x - 5 is(D)	amietta :	11 , Suez 19 , Matrouh 21)			
	a	{ zero }	b	{5 }	©	{ - 5 }	d	{-5,5}	
8	The	set of zeroes of f who	ere f	$(x) = (x-1)^2 (x+1)^2$	2) is	(Suez 12)			
	a	{1,-2}	Ь	{-1,2}	©	{-1,-2}	d	{1,2}	
g		If · z (f) = { z } f(v) –	$x^3 - m$, then: $m = -$	()	emaillia 12 Sharbia 14 Oan	a 15)		
		. —	м) — (b)		(c)		(d)	8	
<u></u>		V.5.7							
10			f(x	$(x) = x^2 + x + a$, then	: <i>a</i> =	(Sharkia 14 , Qena 15)		
	(a)	28	Ь	1	(C)	-1	(d)	- 2	
11		If: $z(f) = \{5\}$, $f($	x) =	$x^3 - 3x^2 + a$, then:	a =	(Assiut 11 , Port said 14)		
	a	³√ Z	b	2	©	4	d	8	
12	If { -	- 2,2} is the set of ze	roes	of the function f wh	ere f	$(x) = x^2 + a$, then:	a =	(Sharkia 21)	
	a		_	- 2	©	4	d		
12	If th	a sat of zaroas of the	func	tion $f \cdot f(y) = y^2$	lev i 1	ie (h. then : k may	ogual	(Chambin at)	
13	(a)		(b)	$tion f: f(x) = x^2 +$	(A)	1 is φ , then . k may		- 2)
14	If the	e set of zeroes of the	func	tion f where $f(x) =$		(b-2) is {2}, a-1	b = 4		
	(a)	1	(Р)	2	©	- 2	(d)	-1	
15	If th	e set of zeroes of the	func	tion $f: f(x) = x^2 + a$	x + 4	equals to the set of z	zeroe	s of the	
		ction $g:g(x)=x-i$	2 , th	en : a =					
	a	2	Ь	-2	©	- 4	d	4	
16	If { 3	B } is the set of comm	on ze	eroes between the tw	o func	tion $f: f(x) = x^2 - 6$	a x ar	nd	
	g : g	a(x) = ax + b, then	b =						
	a	3	Ь	- 3	©	9	d	- 9	
17	If:a	∈ the set of zeroes o	of the	function $f(x) = x^2$	- 2 x -	- 3 and a \€ the set of	zero	es of	
	the f	function $g(x) = x + 1$, the	n: a ∈					
	a	{3 }	b	{-1,3}	©	{-1,3,5}	d	{3,5}	
18	If:f	$(x) = a x^2 + b x + c$	and ;	$f(x) = 0$ to each $x \in$	{ o , z	$\{ \} $, then : 2 $a + b + c = $		******	
	a	2	Ь	4	©	0	d	20	

The set of zeroes of the function f where $f(x) = x^3 - 3x^2 - 4x + 12$ is _____

KTRBYEG.GOM

- (a) {3}(b) {-2,2}(c) {-2,2,3}(d) {2,3}

ALGEBRIC FRACTIONS

The domain of the algebraic fractions - The common domain

Reducing the algebraic fractions - Operations on the algebraic fractions.

ALGEBRAIC FRACTIONAL FUNCTION

1		The domain	of the function	f where	f(x) =	$=\frac{X+2}{X-1}$ is	S
---	--	------------	-----------------	---------	--------	-----------------------	---

{1}

(b) {-2}

© ℝ-{z}

d ℝ-{1}

The domain of the function f where $f(x) = \frac{x^2 - x}{x^2 - 2x - 3}$ is

 \bigcirc $\mathbb{R} - \{ \mathbf{0} \}$

(b) $\mathbb{R} - \{-1,3\}$ (c) $\mathbb{R} - \{0,1\}$ (d) $\mathbb{R} - \{1,-3\}$

The domain of the function f where $f(x) = \frac{x+2}{5x}$ is (Kalyoubia 17)

 \mathbb{R} – $\{ zero \}$

The domain of the function f where $f(x) = \frac{x^2 + 2}{x^2 + 4}$ is _____

(a)

(b) $\mathbb{R} - \{-2,2\}$ (c) $\{-2,2\}$

d {2,3}

The domain of the function f where $f(x) = \frac{x(x+2)}{x^2-4}$ is

(a)

 $\mathbb{R} - \{-2,2\}$ © $\mathbb{R} - \{0,2\}$

The domain of the function f where $f(x) = \frac{x-3}{2}$ is (Giza 17)

a \mathbb{R}

(b) ℝ-{0}(c) ℝ-{-1,0}(d) ℝ-{1,0}

The domain of the function f where $f(x) = \frac{x-7}{3(x+1)}$ is

If: $\mathbf{n}(\mathbf{x}) = \frac{7}{\mathbf{x} + a}$, and the domain of the function \mathbf{n} is $\mathbb{R} - \{-2\}$, then: $a = \frac{1}{2}$

(a) - 2

(C) 0 (d) 7

The domain of the function f where $f(x) = x^2 - 4$ is _____ (Dakahlia 21)

(a) $\mathbb{R} - \{2, -2\}$ (b) $\mathbb{R} - \{0\}$

 \mathbb{R}

φ (d)

If: $n_1(x) = \frac{-7}{x+2}$, $n_2(x) = \frac{x}{x-k}$ and The common domain of the two functions n_1 and n_2

is $\mathbb{R} - \{-2,7\}$, then k = -----(North Sini 12)

(a) 2

KTABYEG.GOM

The domain of the function $f: f(x) = \frac{x^2 - 5x - 14}{x^2 + 9}$ is (Arab republic of Egypton)	ot 21)
--	--------

(a) \mathbb{R}

- (b) $\mathbb{R} \{-3\}$ (c) $\mathbb{R} \{3, -3\}$ (d) $\mathbb{R} \{2, -7\}$

If:
$$n_1(x) = \frac{x+2}{x-1}$$
, $n_2(x) = \frac{x-5}{x+3}$, then The common domain of the two functions is (Cairo 12)

- (a) $\mathbb{R} \{1, -2\}$ (b) \mathbb{R}
- © $\mathbb{R} \{5, -3\}$ d $\mathbb{R} \{1, -3\}$

The common domain of the two functions
$$n_1$$
 and n_2 where : $n_1(x) = 3x - 15$, $n_2(x) = x^2 - 4$ is

- (a) ℝ {5}
- (b) $\mathbb{R} \{-3\}$ (c) $\mathbb{R} \{2, -2, 5\}$ (d) \mathbb{R}

The common domain of the two functions:
$$f_1(x) = \frac{1}{x-1}$$
, $f_2(x) = \frac{1}{x^2+4}$ is (Sharkia 12)

(a)

- (b) $\mathbb{R} \{1\}$ (c) $\mathbb{R} \{1,2\}$

If the domain of the algebraic fraction n is
$$\mathbb{R} - \{2,3,4\}$$
, then : n(3) = (Sharkia 19)

(a) 3

If the domain of the function
$$n: n(x) = \frac{x+2}{4x^2+kx+9}$$
 is $\mathbb{R} - \{\frac{-3}{2}\}$, then: $k = \frac{(Kafr El Sheikh 19)}{(Kafr El Sheikh 19)}$

a

(b) 2

Undefined

OF ZEROES OF THE ALGEBRAIC FRACTIONAL FUNCTIONS

- The set of zeroes of the function f where $f(x) = \frac{x^2 9}{x 3}$ is (Monofia 17)
 - (a) {3}
- (a) φ

The set of zeroes of the function f where
$$f(x) = \frac{x^2 - x - 2}{x^2 + 4}$$
 is (Gharbia 17)

- (a) {2,-2} (b) {-2,-1} (c) {2,-1} (d) {1,-1}

- The set of zeroes of the function f where $f(x) = \frac{(x-5)(x-4)}{x^2+15}$ is _____ (monofia 12)
 - (a) {2,-2}
- (b) {-2,-1} (c) {2,-1} (d) {1,-1}

The set of zeroes of the function f where
$$f(x) = \frac{x^3 + 2x^2 - 4x - 8}{x^2 - 4}$$
 is

- (b) $\{-2,2\}$ (c) $\mathbb{R}-\{-2,2\}$ (d) Φ

If the set of zeroes of the function f where
$$f(x) = \frac{x^2 + 4x - 12}{x + k}$$
 is $\{-6\}$ then : $k = \frac{x^2 + 4x - 12}{x + k}$

(a) 2

- (b) 2
- **©**

(d) 6

If the set of zeroes of the function f where
$$f(x) = \frac{x^2 - k}{x + 2}$$
 is $\{2\}$ then : $k = ----$

KTABYEC.COM

Q

4

REDUCING THE ALGEBRAIC FRACTIONS

- The Simplest form of the function f where $f(x) = \frac{2x^2 + x}{x}$ and $x \ne 0$ is (Giza 12)
 - 3 x
- (b) $2x^2+1$ (c) x^2+1
- (d) 2x+1
- The Simplest form of the function $f: f(x) = \frac{5-x}{x-5}$ and $x \neq 5$ is (Sharkia 12)
 - (a) 5

- The Simplest form of the function $f: f(x) = \frac{x}{x-1} + \frac{1}{1-x}$ and $x \ne 1$ is

- The simplest form of the function $n: n(x) = \frac{3-x}{x-3}$ such that $x \in \mathbb{R} \{3\}$ is _____ (Dakahlia 17)
 - **a** 1

b -1

- The simplest form of: $n(x) = \frac{x^2 + 1}{x^2 + 4} + \frac{3}{x^2 + 4}$ is (Fayoum 15)
 - (a) 3

OPERATIONS ON THE ALGEBRAIC FRACTIONS

- The additive inverse of the fraction $n: n(x) = \frac{x-1}{x+3}$ and $x \neq -3$ is
- (b) $\frac{1-x}{x+3}$ (c) $\frac{x+1}{-(x+3)}$
- The fraction f where $f(x) = \frac{x-2}{x-5}$ has an additive inverse if the domain is
- (a) $\mathbb{R} \{2\}$ (b) $\mathbb{R} \{5\}$ (c) $\mathbb{R} \{-2,2\}$ (d) $\mathbb{R} \{0,1\}$
- If: $n(x) = \frac{x-2}{x+5}$, then the domain of n^{-1} is (Gharbia 17, Souhag 18, Port Said 19)

- (b) ℝ-{2}
 (c) ℝ-{-5}
 (d) ℝ-{2,-5}
- If: $n(x) = \frac{x}{x^2 + 1}$, then the domain of n^{-1} is (Sharkia 21)
 - (a) ℝ { 0 }(b) Φ

- © $\mathbb{R} \{-1\}$ d $\mathbb{R} \{1, -1\}$
- The multiplicative inverse of the fraction: $n(x) = \frac{x-3}{x^2-9} \times \frac{x-3}{x}$ is _____
 - \bigcirc $\frac{1}{x}$
- (b) $-\frac{1}{x}$
- © x

- (d) X
- The fraction f where $f(x) = \frac{x-2}{x-5}$ has a multiplicative inverse if the domain is
 - **a** \mathbb{R}

- © $\mathbb{R} \{2\}$ d $\mathbb{R} \{2,5\}$
- 7 If: $n(x) = \frac{x-3}{x^2-4}$, then: $n^{-1}(3) = \dots$
 - Φ
- (b) ℝ-{3,-3}(c) ℝ-{0}

KTAB4EG.GOM

- 8 If: $(x \neq 0)$, then: $n(x) = \frac{5x}{x^2 + 1} \div \frac{x}{x^2 + 1} = \dots$ (Souhag 19, S-Sini 21)
 - (a) 5
- (b) 1

(d) 1

- 9 If: $n(x) = \frac{x-2}{x+1}$, then: $n^{-1}(2) = \dots (Dakahlia 21)$
 - **a D**

(C) 3

- undefined
- The domain of the multiplicative inverse of the function: $n(x) = \frac{x+2}{x-3}$ is _____(Beheira 21)
 - $\mathbb{R} \{3\}$
- (b) $\mathbb{R} \{-3\}$ (c) $\mathbb{R} \{-2,3\}$ (d) \mathbb{R}
- The domain of the Additive inverse of the function: $n(x) = \frac{x-2}{x-5}$ is _____(Port Said 21)
 - (a) $\mathbb{R} \{2,5\}$ (b) $\mathbb{R} \{2\}$ (c) $\mathbb{R} \{5\}$ (d) $\{2,5\}$

- If the algebraic fraction $\frac{x-a}{x-2}$ has a multiplicative inverse which is $\frac{x-2}{x+3}$, then: $a = \frac{(Beni Suef 21)}{(Beni Suef 21)}$
 - ② ℝ-{2,5}
 ⑤ ℝ-{5}
 ③ (2,5)

- - **a**

- (b) R-{2}
 (c) R-{0}
 (d) R-{0,2}
- If the domain of the function: $n(x) = \frac{1}{x} + \frac{9}{x+b}$ is $\mathbb{R} \{0,4\}$, then: $b = \frac{9}{x+b}$

- The function f where $f(x) = \frac{x-2}{x^3+27}$, then the domain of its multiplicative inverse is
 - (Port Said 17)

- \mathbb{R} $\{$ 2 $\}$

KTRB4EG.GOM

- (b) $\mathbb{R} \{-3,2\}$ (c) $\mathbb{R} \{2,-3,3\}$ (d) $\mathbb{R} \{-3,3\}$

PROBABILITY

Operation on the events

1		The probability of th	ne imį	ossible event equals				
		•	•			heikh 17 , Beni Suef 17 , South	Sini 19	, Cairo 21 , Kalyoubia 21)
	a	φ	b	Zero	©	<u>1</u> 2	d	1
2		If : A and B are two n	nutua	lly exclusive events ,	then	: P (A ∩ B) =		
			(Giza 1	1 , Cairo 12 , Gharbia 15 , Mo	nofia 17	, Fayoum 17 , Cairo 19 , Ismai	llia 19 ,	Red Sea 21 , Dakahlia 21)
	a	ф	Ь	P(A)	©	P(B)	d	Zero
3	If: A	A and B are two even	ts in a	sample space for a r	andor	n experiments , A ⊂	В	
	, the	$\operatorname{en}: P(A \cap B) = \dots$	(Kaly	oubia 12 , Cairo 16)				
	a	P(B)	b	P(A)	©	Zero	d	ф
4		If : A ⊂ B , then : P (A U B) = (Gharbia 12, 9	Qena 17	, Kalyoubia 18 , Beheira 19 , A	swan 1	9 , Dakahlia 19)
	a	Zero	Ь	P(A)	©	P(B)	d	P(A∩B)
5		If a regular coin is to	ssed	once , then the proba	bility	of getting head or ta	il is -	(Dakahlia 13 , Alex 14
	a	100 %	b	50 %	©	25 %	d	zero
6		If a regular die is rol	led or	ice , then the probab	ility of	f getting an odd num	ber a	nd even
	num	nber together equals		(Fayoum 12 , Beheira 14 , Al	ex 16)			
	a	Zero	Ь	1 2	©	3 4	d	1
7	If a	regular die is rolled o	once,	then the probability	of get	ting an odd number	and a	prime
	num	nber together equals		(Port Said 19 , Kafr El Sheik	(h 21)			
	a	1 6	Ъ	Zero	©	3 4	d	1
8	If a	regular coin is tosse	d once	, then the probabili	ty of g	etting tail is(B	eni Sue	f 19)
	a	1 4	Ь	1 2	©	3 4	d	1
9	If: A	A and B are two mutu	ıally e	xclusive events , P (B)=	0.5 and P (A ∪ B) =	0.7	
	, the	en:P(A)=(A	lex 17)					
	a	0.02	в	0.2	©	0.5	d	0.13
10	If th	e probability that a s	studei	nt succeeded is 95 %	, then	the probability that l	ne do	es not succeed
	is	(Aswan 17)						
	a	20 %	Ь	5 %	©	5010 %	d	zero
11	If: A	A and B are two mutu	ıally e	xclusive events , the	n : A ∩	B = (Assiut 21, Al	ex 21 , (Cairo 21)
	a	zero	b	0.5	©	1	d	ф

KTARYEG, GOM

12	If: A and B are two events in a sample space, then the event of occurrence of A only	v is = (Menio	a 15
12	ii . A and b are two events in a sample space, then the event of occurrence of A only	y 13 — (Men	W

A` **a**

- A B
- $A \cap B$
- $A \cup B$

If: A is an event from the sample space of a random experiment, P(A) =(Dakahlia 17)

a

- 1

- 1-P(A)
- P(A)-1

- **a** 0.8
- 0.6
- 0.4
- 0.2

15 If: P(A) =
$$\frac{1}{3}$$
, then: P(A) =(Giza 12, Assiut 17)

(b) $\frac{2}{3}$

1

 $\frac{1}{2}$

16 If: P(A) = P(A), then: P(A) =(Alex 12, Dakahlia 12, Giza 17, Suez 19)

- (a) Zero

If: $X \subset S$ and X is the complementary event to event X, then: $P(X \cap X) =$

- **a** zero

If: A and B are two events in a sample space of a random experiment,
$$P(A) = \frac{2}{3}$$
, $P(B) = \frac{1}{2}$

$$P(A \cup B) = \frac{5}{6}$$
, then: $P(A \cap B) = \dots (Dakahlia 12)$

If: A and B are two events in a random experiment and $A \subset B$, then: $P(A - B) = \dots$

- (a) zero
- (b) P(A) P(B) (c) P(B) P(A)
- (d) P(A)

If: $A \subset S$ of a random experiment and P(A') = 2P(A), then: P(A) = (Alex 19, Port Said 19)

 $\frac{1}{3}$

21 If: P(A) + P(A') = 2k, then: $k = \dots (Giza 19)$

a

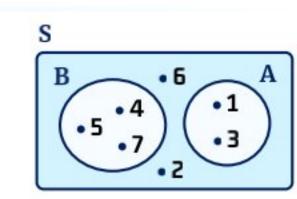
⊕ ¹/₂

22 If: $A \cap B = \emptyset$, then: $P(A - B) = \dots (Kalyoubia 19)$

- P(A)
- P(B)
- P(B-A)

23 In The opposite Figure :

If: A and B are two events in a sample space of a random experiment


KTREYEG.GOM

Then, $P(B-A) = \dots (Kafr El Sheikh 19)$

a $\frac{1}{2}$

 $\frac{5}{7}$

 $\frac{3}{7}$

ESSAY QUESTIONS

1

x+y=5

EQUATIONS

Solving two equations in two variables – Solving two equations of second degree in one unknown – General formula – Set of zeroes of the polynomial functions.

SOLVING TWO EQUATION OF THE FIRST DEGREE IN TWO VARIABLES

I Find in $\mathbb{R} \times \mathbb{R}$ the solution set of the two equations

and

$$X - y = 1$$
 (S-Sini 13, Kafr El Sheikh 21) {(3,2)}

2 2
$$x - y = 3$$
 and $x + 2y = 4$ (N-Valley 12, Alex 18, Sharkia 19, Damietta 21) {(2, -1)}

3
$$y = x + 4$$
 and $x + y = 4$ (Souhag 16, Gharbia 19, S-Sini 21) {(0,4)}

4 3
$$x + 4y = 24$$
 and $x - 2y = -2$ (Giza 12, Gharbia 18) {(4,3)}

$$[5] 2x+3y=7$$
 and $3x+2y=8$ {(2,1)}

2 Find in
$$\mathbb{R} \times \mathbb{R}$$
 the S.S of the two Equations: $\frac{X}{6} + \frac{y}{3} = \frac{1}{3}$ and $\frac{X}{2} + \frac{2y}{3} = 1$ {(2,0)}

If the values of a and b knowing that (3, -1) is the solution set of the two equations:

$$a x + b y - 5 = 0$$
 and $3 a x + b y = 17$ (Gharbia 16, Damietta 17, Luxor 18) ($a = 2, b = 1$)

Find the values of a and b, If: (a, 2a) is a solution for the two equations:

$$3x - y = 5$$
 and $x + y = -1$ (Dakahlia 17) $(a = 1, b = -1)$

A rectangle is with a length more than its width by 4 cm. If the perimeter of rectangle is 28 cm.

(Alex 12, Cairo 17, Kalyoubia 19) (45 cm.)

- A two-digit number, the sum of its digits is 11, if the two digits reversed, then the resulted number will be more than the original number by 9. what is the original number.

 (Kafr El Sheikh 16) (45)
- Find algebraically in $\mathbb{R} \times \mathbb{R}$ the solution set of: the equations represented by the two straight lines: 2x - y = 1 and the straight line passes through the two points (1, -2) and (-1, -4)

If the straight lines whose equations are:
$$x + y = 3$$
, $3x - 2y + 1 = 0$ and $y + kx = 4$ intersects at the same point, then **Find the value of** k. (k=2)

If the two points (3,1), (5,5) lies on the straight line ax + by = 5Find the value of a and b.

KTRB4EG.GOM

SOLVING AN EQUATION OF THE SECOND DEGREE IN ONE UNKNOWN

- II Find in $\mathbb R$ the solution set of the following equations using the general formula
 - 1 $\mathbb{R}^2 4x + 1 = 0$ (rounding the result to two decimal digits) (Beheira 11, Alex 13, Aswan 14, Giza 17) { 0.27, 3.73}
 - 2 | 2 | $x^2 4x + 1 = 0$ (Approximating the result to the nearest three decimal places)

(Qena 12 , Dakahlia 19 , Kalyoubia 19) { 0.293 , 1.707 }

3 $3x^2 = 5x - 1$ (Approximating the result to two decimals)

(Helwan 11, Luxor 17, Monofia 19) { 0.23, 1.43 }

4 (x - 1) = 4 (taking $\sqrt{17} \approx 4.12$)

(Sharkia 17, Souhag 19) { - 1.56, 2.56}

 $x + \frac{4}{x} = 6$ (rounding the result to one decimal digit)

(Damietta 19) { 0.8 , 5.2 }

6 (x-4)(x-2) = 1 (taking $\sqrt{2} \approx 1.41$)

(Monofia 17) { 1.59, 4.41 }

2 Groph the function f where $f(x) = x^2 - 2x + 3$ over the interval [-1,3], then from the graph

, find the solution set of the equation : $x^2 - 2x + 3 = 0$

(Qena 19) ((Ф))

Find in $\mathbb R$ the solution set of the following equations using the general formula

 $\frac{3}{x} + \frac{5}{x+1} = 2$ (rounding the result to two decimal digits)

{-0.44,3.44}

 $\frac{x+1}{x+2} = \frac{2x+3}{3x+4}$ (rounding the result to two decimal digits)

 $\{-\sqrt{2},\sqrt{2}\}$

If: x = 3 is the equation of the symmetry axis of the curve of the function f where

 $f(x) = x^2 + ax + 8$, Then, find the solution set of the equation: f(x) = 0

{2,4}

If: (2, -3) is the point of the vertex of the curve of the function f where

 $f(x) = x^2 + ax + b$, Then, find the solution set of the equation: f(x) = 0

{-0.24, 4.24}

If the solution set of the equation : $x^2 + ax + b = 0$ is $\{3, -5\}$

, then : Find the values of a and b.

(a=2,b=-15)

If x = 3 is one of the two roots of the function : $x^2 + ax + b = 0$ and a - b = 1

, then : Find the other root.

(-1)

8 find the solution set of the equation in \mathbb{R} : $(x+2)^4 + 16 = 5x^2 + 20x$

KTREYEG.COM

 $\{0, -4, -1, -3\}$

SOLVING TWO EQUATION OF THE FIRST DEGREE IN TWO VARIABLES

I Find in $\mathbb{R} \times \mathbb{R}$ the solution set of the two equations :

$$1 x - y = 0$$

$$\frac{x}{v} = 4$$

$$2 x - y = 1$$

$$x^2 + y^2 = 25$$

$$3x - y = 0$$

$$x^2 + xy + y^2 = 27$$

$$y - x = 3$$

$$x^2 + y^2 - xy = 13$$

$$y + 2x = 7$$

$$(y+2x-8)^2+x^2=5$$

$$\frac{1}{x} + \frac{1}{y} = 2$$
 where $x \neq 0$, $y \neq 0$

The difference between two numbers is 5 and the product of them is 36.

Find the two numbers

3 The sum of two integers is 9 and the difference between their squares is 27.

Find the two numbers

A right-angled triangle of hypotenuse length 13 cm. and its perimeter is 30 cm.

Find the lengths of the other two sides.

Maright-angled triangle of hypotenuse length 13 cm. and its perimeter is 30 cm.

Find the lengths of the other two sides.

SOLVING TWO EQUATION OF THE FIRST DEGREE IN TWO VARIABLES

In Find in \mathbb{R} the set of zeroes of the following functions:

1
$$f(x) = x^2 - 2x + 1$$

$$(S-Sinai\ 21)\{1\}$$

2
$$f(x) = x^3 + x^2 - 20x$$

3
$$f(x) = (x-2)(x+3)+4$$

$$(Monofia 15) \{-2,1\}$$

4
$$f(x) = x^3 - 3x^2 - 4x + 12$$

If the set of zeroes of the function f where $f(x) = ax^2 + bx + 15$ is $\{3,5\}$

, then : Find the values of a and b.

(Fayoum 19) (
$$a = 1, b = -8$$
)

If the set of zeroes of the function f where $f(x) = ax^2 + x + b$ is $\{0, 1\}$

KTRESEG.GOM

, then : Find the values of
$$a$$
 and b .

(Alex 17) (
$$a = -1$$
, $b = 0$)

ALGEBRIC FRACTIONS

The domain of the algebraic fractions – The common domain

Reducing the algebraic fractions – Operations on the algebraic fractions.

ALGEBRAIC FRACTIONAL FUNCTION

I Find n (x) in the simplest form, showing its domain.

1
$$n(x) = \frac{x^2 - 4}{x^3 - 8}$$

2
$$n(x) = \frac{x^3 + 1}{x^3 - x^2 + x}$$

3
$$n(x) = \frac{x^3 + x^2 - 2}{x + 1}$$

2 If:
$$n_1(x) = \frac{2x}{2x+4}$$
, $n_2(x) = \frac{x^2+2x}{x^2+4x+4}$.

Prove that: $n_1 = n_2$ (Menia 17, Beheira 19, Red sea 21)

3 If:
$$n_1(x) = \frac{x^2}{x^3 - x^2}$$
, $n_2(x) = \frac{x^3 + x^2 + x}{x^4 - x}$.

Prove that: n1 = n2 (Kafr El Sheikh 17, Souhag 19, South Sini 21)

If:
$$n_1(x) = \frac{x^2}{x^3 - x^2}$$
, $n_2(x) = \frac{x^2 + x + 1}{x^3 - 1}$.

Prove that: $n_1 = n_2$ for the values of x belong to the common domain. (Cairo 19, Assiut 21)

5 If:
$$n_1(x) = \frac{x^2 + x - 6}{x^2 - 4}$$
, $n_2(x) = \frac{x^2 - 9}{x^2 - x - 6}$.

Show whether: $n_1 = n_2$ or not (Dakahlia 17, Ismaillia 21)

OPERATIONS ON THE ALGEBRAIC FRACTIONS

Find n (x) in the simplest form, showing the domain of n where:

$$1 n(x) = \frac{x}{x-4} - \frac{x+4}{x^2-16}$$
. (Damietta 11, Aswan 16, North Sini 17, Kalyoubia 18, Red Sea 21, Giza 21)

3
$$n(x) = \frac{x^2 - 2x + 4}{x^3 + 8} + \frac{x^2 - 1}{x^2 + x - 2}$$
 (Assiut 08, Damietta 19)

KTRESEG, COM

6
$$n(x) = \frac{x^2 + 2x + 4}{x^3 - 8} - \frac{9 - x^2}{x^2 + x - 6}$$
. (Beheira 15, Alex 17, Sharkia 17, Monofia 18)

7
$$n(x) = \frac{x^2 + x}{x^2 - 1} - \frac{5 - x}{x^2 - 6x + 5}$$
. (Luxor 17, Menia 18, Dakahlia 19, Souhag 21)

8
$$n(x) = \frac{x^2 + 2x + 1}{2x - 8} \times \frac{x - 4}{x + 1}$$
. (Ismaillia 15, Cairo 16, Suez 17)

9
$$n(x) = \frac{x^3 - 1}{x^2 - 2x + 1} \times \frac{2x - 2}{x^2 + x + 1}$$
. (Souhag 12, Luxor 17, Fayoum 17, Monofia 18, Kalyoubia 18, Dakahlia 19, Beheira 21)

10
$$n(x) = \frac{x-1}{x^2-1} \div \frac{x^2-5x}{x^2-4x-5}$$
 (Aswan 14, Beheira 15, Menia 16, Matrouh 19)

11
$$n(x) = \frac{x^2 - 2x - 15}{x^2 - 9} \div \frac{2x - 10}{x^2 - 6x + 9}$$
 (Alex 16, Beheira 18, Gharbia 18)

12
$$n(x) = \frac{x^2 - 2x + 1}{x^3 - 1} \div \frac{x - 1}{x^2 + x + 1}$$
. (Alex 11, Qalyubia 12, Gharbia 17, Dakahlia 18, Suez 19)

13 | n (x) =
$$\frac{x^2 - 49}{x^3 - 8} \div \frac{x + 7}{x - 2}$$
 and find n (1). (Gharbia 12, Beheira 17, Assiut 19, Fayoum 19)

14)
$$n(x) = \frac{x^3 - 8}{x^2 + x - 6} \times \frac{x + 3}{x^2 + 2x + 4}$$
 (Souhag 19, Red Sea 19, Red Sea 21, Dakahlia 21)

15
$$n(x) = \frac{x-3}{x^2-7x+12} - \frac{x-3}{3-x}$$
. (Assiut 19, Luxor 19, Alex 21)

If the domain of the Function n where $n(x) = \frac{b}{x} + \frac{9}{x+a}$ is $\mathbb{R} - \{0,4\}$, n(5) = 2.

Find: the value of a and b. (Menia 14, Beheira 15, Kafr El Sheikh 16, South Sini 17, Sharkia 19)

3 If:
$$n(x) = \frac{x^2 - 2x}{(x-2)(x^2+2)}$$
.

- 1 Find: $n^{-1}(x)$, showing its domain.
- 2 If: $n^{-1}(x) = 3$, What: the value of x (Aswan 16, Gharbia 17, Port Said 17, Kalyoubia 18, Alex 19)
- If the set of zeroes of the function f where $f(x) = \frac{ax^2 6x + 8}{bx 4}$ is $\{4\}$ and its domain is $\mathbb{R} \{2\}$

Find: the value of α and b. (Sharkia 17)

If the domain of $n: n(x) = \frac{L}{x} + \frac{9}{x-m}$ is $\mathbb{R} - \{0, -2\}$, n(4) = 1.

Find: the value of L and m. (Menia 17)

PROBABILITY

Operation on the events

If: A and B are two mutually exclusive events in a sample space of a random experiment

and P(A) =
$$\frac{1}{2}$$
, P(B) = $\frac{1}{3}$, Then Find P(AUB).

If : A and B are two events in a sample space of a random experiment

$$P(B) = \frac{1}{12}, P(A \cup B) = \frac{1}{3}, Then Find P(A) if:$$

1 A and B are two mutually exclusive events

A box contains 12 balls , 5 of them are blue , 4 are red and the left are white. A ball is randomly drawn from the box . Find the probability that the drawn ball is :

- 1 Blue
- 2 Not red
- 3 Blue or red

(North Sini 12, Alex 13, Luxor 18, Souhag 18) (
$$\frac{5}{12}$$
, $\frac{2}{3}$, $\frac{3}{4}$)

4 If: X and Y are two events in a sample space of a random experiment where:

$$P(Y) = \frac{2}{5}$$
, $P(X) = P(X)$, $P(X \cap Y) = \frac{1}{5}$ Then Find:

- 1 P(X)
- 2 P(XUY)

(Dakahlia 14, Kalyoubia 16, Kafr El Sheikh 18) «
$$\frac{1}{2}$$
, $\frac{7}{10}$ »

If: A and B are two events in a sample space of a random experiment

$$P(A) = 0.7$$
, $P(B) = 0.4$, $P(A \cap B) = 0.2$, Then Find:

- 1 P(A) 2 P(AUB)

If: A and B are two events in a sample space of a random experiment

$$P(A) = 0.6$$
, $P(B) = 0.3$, $P(A \cap B) = 0.2$, Then Find:

- $1 P(A \cup B) 2 P(A-B)$

A bag contains 20 identical card numbered from 1 to 20. A card is randomly drawn.

Find the probability that the number on the card is:

1 Divisible by 3 2 An odd and divisible by 5

(Sharkia 12)
$$(\frac{3}{10}, \frac{1}{10})$$

If: A and B are two events in a sample space of a random experiment.

, P (A) = 0.8 , P (B) = 0.7 , P (A
$$\cap$$
 B) = 0.6 , Then Find :

- 1 The probability of non-occurrence of the event A
- 2 The probability of occurrence of the two events at least
- 3 The probability of occurrence of one event without the other

KTRB4EG.GOM

Best wishes, mr Abdelrahman Essam